Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

A ferroelectric barium titanate, $\mathrm{BaTi}_{2} \mathrm{O}_{5}$

Teiichi Kimura, ${ }^{\text {a* }}$ Takashi Goto, ${ }^{\text {a }}$ Hisanori Yamane, ${ }^{\text {b }}$ Hiroaki Iwata, ${ }^{\text {a }}$ Takashi Kajiwara ${ }^{c}$ and Takaya Akashi ${ }^{\text {a }}$
${ }^{\text {a }}$ Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan, ${ }^{\mathbf{b}}$ Center for Interdisciplinary Research, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan, and ${ }^{\text {c }}$ Graduate School of Science, Department of Chemistry, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan
Correspondence e-mail: tei@imr.edu

Received 23 June 2003
Accepted 29 September 2003
Online 8 November 2003
The crystal structure of monobarium dititanium pentaoxide, $\mathrm{BaTi}_{2} \mathrm{O}_{5}$, synthesized by a floating-zone method, was studied by X-ray diffraction. Previous reports describe the structure as being in the monoclinic centrosymmetric space group $C 2 / m$. We have recently found that this material exhibits ferroelectricity, and therefore $\mathrm{BaTi}_{2} \mathrm{O}_{5}$ should have lower symmetry. The crystal structure of $\mathrm{BaTi}_{2} \mathrm{O}_{5}$ was refined in space group $C 2$, revealing a displacement of the Ti atoms along the b axis. This result is consistent with the fact that the ferroelectricity of $\mathrm{BaTi}_{2} \mathrm{O}_{5}$ was only observed along the b axis.

Comment

Since $\mathrm{BaTi}_{2} \mathrm{O}_{5}$ decomposes into BaTiO_{3} and $\mathrm{Ba}_{6} \mathrm{Ti}_{17} \mathrm{O}_{40}$ at temperatures higher than 1400 K (Ritter et al., 1986), this compound has been regarded as a metastable phase or a lowtemperature phase. Harrison (1956) reported the crystal structure of $\mathrm{BaTi}_{2} \mathrm{O}_{5}$, based on Weissenberg camera data, and showed the crystal structure to be monoclinic [space group $C 2 / m$, with $a=16.892$ (13) $\AA, b=3.930$ (1) $\AA, c=9.410$ (4) \AA and $\beta=103.03(5)^{\circ}$; the original description was in the $A 2 / m$ setting]. The R value of that analysis was $\sim 20 \%$. The reported density measured by a flotation method was $4.4 \mathrm{Mg} \mathrm{m}^{-3}$, which differs significantly from the value calculated from the lattice parameters and Z value ($5.1 \mathrm{Mg} \mathrm{m}^{-3}$).

The crystal structure of $\mathrm{BaTi}_{2} \mathrm{O}_{5}$ was also refined using data collected with a four-circle X-ray diffractometer (Tillmanns, 1974). The single crystal used for that analysis was prepared by rapid solidification of a melt composed of $\mathrm{BaO} / \mathrm{TiO}_{2}$ in a $30: 70$ molar ratio. The crystal structure was refined using the $C 2 / \mathrm{m}$ model of Harrison (1956), giving $R 2$ and $R 1$ values of 0.031 and 0.026 , respectively [with intensity data of $I>2 \sigma(I)$].

Recently, we have synthesized $\mathrm{BaTi}_{2} \mathrm{O}_{5}$ single crystals of more than 1 cm in size by a floating-zone method (Akashi et al., 2003a) and characterized the dielectric properties. The
electric-field-polarization (P-E) curves along the b axis showed the existence of ferroelectricity (Akashi et al., 2003b). However, this result is not consistent with the centrosymmetric structure of space group $C 2 / m$.

The X-ray diffraction data collected for the present study were indexed with a monoclinic lattice. The refined lattice parameters agree with the previously reported values within the standard uncertainties, and the space group could be $C 2$, $C m$ or $C 2 / m$ according to the experimental systematic extinctions. The measured density agrees well with the calculated density.

Refinement using the structural model in $C 2 / m$ reported by Harrison (1956) converged to an $R 1$ value of 0.051 $(w R 2=0.143)$. The U_{22} anisotropic displacement parameter for the Ti1 site was refined to $0.020(1) \AA^{2}$, which is $3-4$ times greater than the values of $U_{11}\left[0.005(1) \AA^{2}\right]$ and U_{33} [0.006(1) $\left.\AA^{2}\right]$ for the same site, and of U_{22} [0.004 (1)0.006 (1) \AA^{2}] for other Ti sites. The B_{22} anisotropic displacement parameter of the Ti1 site reported by Tillmanns (1974) was also over 10 times greater than the other parameters.

Since the displacement parameter of the Ti1 site along the b axis was so large, we refined the structure in space group $C 2$, in which the mirror plane of $C 2 / m$ perpendicular to the b axis is removed. The $R 1$ and $w R 2$ values using all data were 0.046 and 0.112 , respectively, and the U_{22} value of the Ti1 site refined to 0.0054 (6) \AA^{2}. The crystal structure refined with the $C 2$ model is illustrated in Fig. 1. As can be seen, the elongation of the displacement ellipsoids was insignificant.

The arrangement of the Ba and O atoms is close to the cubic closest packing, and the most closely packed layers are aligned parallel to the $(3 \overline{1} 3),(\overline{3} 3),(5 \overline{1} 1)$ and $(\overline{5} 1)$ planes. Fig. 2 shows the crystal structure of $\mathrm{BaTi}_{2} \mathrm{O}_{5}$ using Ti -atom-centered O -atom octahedra. All atoms in the structure are arranged approximately along the (104), (40 $\overline{1})$ and (010) planes.

There are three kinds of Ti sites in the crystal structure of $\mathrm{BaTi}_{2} \mathrm{O}_{5}$. The vertex O atoms link octahedra of the same kind of Ti site along the b axis. In the $a c$ plane, the Ti1-centered O-atom octahedra $\left(\mathrm{Ti1O}_{6}\right)$ connect to the $\mathrm{Ti1O}_{6}$ and $\mathrm{Ti}_{3} \mathrm{O}_{6}$ octahedra via shared apices, and to the ${\mathrm{Ti} 2 \mathrm{O}_{6}}$ octahedra via shared edges. The $\mathrm{Ti}_{2} \mathrm{O}_{6}$ and $\mathrm{Ti}_{3} \mathrm{O}_{6}$ octahedra share edges continuing along the b axis.

Figure 1
The arrangement of atomic positions in the structure of $\mathrm{BaTi}_{2} \mathrm{O}_{5}$; displacement ellipsoids are shown at the 99% probability level for Ba and Ti atoms, and O atoms are shown as spheres. For symmetry codes, see Table 1.

The Ba 1 atoms are surrounded by 12 O atoms and in the large tunnels of TiO_{6} octahedra along the b axis. The Ba 2 atoms are situated in the 12 -fold coordination sites of the O atoms belonging to the $\mathrm{Ti}_{6} \mathrm{O}_{6}$ and $\mathrm{Ti}_{3} \mathrm{O}_{6}$ octahedra. The arrangement of the Ba 2 atoms and the ${\mathrm{Ti} 1 \mathrm{O}_{6}}$ and $\mathrm{Ti}_{3} \mathrm{O}_{6}$ octahedra along the b axis is similar to that in the perovskitetype structure.

Selected interatomic distances and bond angles are listed in Table 1. The Ba1-O distances [2.673 (9)-3.279 (7) \AA] are close to the $\mathrm{Ba}-\mathrm{O}$ distances $(2.653-3.278 \AA)$ reported for $\mathrm{Ba}_{5} \mathrm{Ti}_{17} \mathrm{O}_{40}$, in which the Ba atoms are coordinated by 12 O atoms (Hofmeister et al., 1984). The $\mathrm{Ba} 2-\mathrm{O}$ distances [2.766 (8)-2.998 (5) A] have a smaller deviation than the $\mathrm{Ba} 1-\mathrm{O}$ distances. The bond-valence sums calculated from the parameters presented by Brese \& Keeffe (1991) are 2.49 and 2.45 for atoms Ba 1 and Ba 2 , respectively. These values are smaller than that calculated for the Ba atom in tetragonal BaTiO_{3} (2.78; Buttner \& Maslen, 1992) and are close to the values for the Ba atoms in $\mathrm{Ba}_{6} \mathrm{Ti}_{17} \mathrm{O}_{40}$ (2.13-2.64).

The $\mathrm{Ti} 3-\mathrm{O}$ bond lengths are in the range $1.710(5)-$ 2.474 (5) \AA and are greater than the Ti1-O [1.765 (10)2.171 (10) Å] and Ti2-O [1.796 (5)-2.150 (5) Å] distances. The bond-valence sums for atoms Ti1, Ti2 and Ti3 are 3.99, 3.95 and 4.09 , respectively, implying that the valence of the Ti atoms is 4 . The bond-valence sums for the O atoms (1.93-2.19) are close to 2, except for sites O3 (2.31) and O6 (2.32). Atom O6 is surrounded by one Ti 3 and three Ba 1 atoms, and the O6-Ti3 distance $[1.710(5) \AA$] is the shortest of the $\mathrm{Ti}-\mathrm{O}$ bond lengths in $\mathrm{BaTi}_{2} \mathrm{O}_{5}$. The $\mathrm{O} 6-\mathrm{Ba}$ distances [2.673 (9), 2.703 (5), 2.727 (9) \AA] are also shorter than the average $\mathrm{O}-$ Ba distance in $\mathrm{BaTi}_{2} \mathrm{O}_{5}(2.908 \AA)$. Atoms Ti1 and Ti2 and two Ba 1 atoms coordinate with atom O 3 , and the $\mathrm{O} 3-\mathrm{Ba} 1$ distances $[2.673(7)$ and $2.742(8) \AA$] are shorter than the

Figure 2

The structure of $\mathrm{BaTi}_{2} \mathrm{O}_{5}$, with Ti-centered O-atom octahedra.
average $\mathrm{O}-\mathrm{Ba}$ distance. These short $\mathrm{O}-\mathrm{Ba}$ distances are related to the large bond-valence sums of atoms O3 and O6.

The $\mathrm{O} 1-\mathrm{Ti} 1-\mathrm{O} 1$ and $\mathrm{Ti} 1-\mathrm{O} 1-\mathrm{Ti} 1$ bond angles are both $176.5(3)^{\circ}$, meaning that atoms O 1 and Ti1 are aligned almost linearly along the b axis. The Ti1-O1 bond lengths are alternately 1.765 (10) and 2.171 (10) \AA; atom Ti1 shifts from the center of the TilO_{6} octahedron along the b axis. On the other hand, atoms Ti2 and Ti3 lie almost in the $a c$ plane and apart from the (104) and (40 $\overline{1})$ planes in the $\mathrm{Ti}_{2} \mathrm{O}_{6}$ and $\mathrm{Ti}_{3} \mathrm{O}_{6}$ octahedra. The $\mathrm{O} 5-\mathrm{Ti} 2-\mathrm{O} 5$ and $\mathrm{Ti} 2-\mathrm{O} 5-\mathrm{Ti} 2$ bond angles are $152.3(3)^{\circ}$, and the $\mathrm{O} 4-\mathrm{Ti} 3-\mathrm{O} 4$ and $\mathrm{Ti} 3-\mathrm{O} 4-\mathrm{Ti} 3$ angles are $159.3(3)^{\circ}$. The Ti2-O5 bond lengths [2.025 (10) and $2.028(10) \AA$] are close to the $\mathrm{Ti} 3-\mathrm{O} 4$ bond lengths [1.983 (11) and 2.018 (11) Å].

The atomic coordination of (x, y, z) is equivalent to that of $(-x, y,-z)$ because of the twofold symmetry along the b axis in space group $C 2$, and therefore ferroelectricity is expected only in the direction of the b axis. This fact is in accordance with the observed dielectric properties of a $\mathrm{BaTi}_{2} \mathrm{O}_{5}$ single crystal (Akashi et al., 2003a,b). By selecting the Ba1 site as a reference $(y=0.000)$, the y positions are +0.002 for atom Ba 2 , +0.012 for atom Ti2, +0.009 for atom Ti3 and $+0.009-0.021$ for atoms $\mathrm{O} 1-\mathrm{O} 8$. On the other hand, the Ti1 site is at -0.031 , and the displacement is $\sim 0.18 \AA$ from the average y position of the O-atom sites. The spontaneous polarization $\left(0.10 \mathrm{C} \mathrm{m}^{-2}\right)$ can be calculated by assuming nominal charges of $\mathrm{Ba}^{2+}, \mathrm{Ti}^{4+}$ and O^{2-}. This value is about two-thirds of that calculated for tetragonal $\mathrm{BaTiO}_{3}\left(0.16 \mathrm{C} \mathrm{m}^{-2}\right)$. The value of $0.10 \mathrm{C} \mathrm{m}^{-2}$ was measured at 523 K , applying an electric field of $10^{6} \mathrm{~V} \mathrm{~m}^{-1}$ (Akashi et al., 2003b). Generally, the Ti^{4+} ion has a d_{0} electron configuration and tends to stay in a distorted O -atom octahedron because of the second-order Jahn-Teller effect (Wheeler et al., 1986), and hence the Ti^{4+} ions of $\mathrm{BaTi}_{2} \mathrm{O}_{5}$ are situated in the distorted O -atom octahedra. The displacement of Ti atoms in the Ti1 sites is mainly responsible for the ferroelectricity.

Experimental

$\mathrm{BaCO}_{3}(99.9 \%)$ and TiO_{2} (99.9\%) powders in a $\mathrm{Ba} / \mathrm{Ti}$ molar ratio of 2:1 were weighed and mixed in an agate motor. The mixed powder was pressed isostatically into a rod at 10 MPa and heated at 1503 K for 43 ks . The sintered rod, about 6 mm in diameter, was melted and solidified directionally by the floating-zone method at a rate of $5.6 \times 10^{-6} \mathrm{~m} \mathrm{~s}^{-1}$ in flowing $79 \% \mathrm{Ar}-21 \% \mathrm{O}_{2}$ gas. Colorless and transparent single crystals of $\mathrm{BaTi}_{2} \mathrm{O}_{5}(3 \mathrm{~mm}$ in diameter and 2 mm in length) were synthesized. The crystals were cleaved into smaller pieces for use in the X-ray diffraction experiment.

Crystal data

$\mathrm{BaTi}_{2} \mathrm{O}_{5}$

$M_{r}=313.14$
Monoclinic, C2
$a=16.899$ (3) Å
$b=3.9350$ (6) \AA
$c=9.4105$ (15) A
$\beta=103.103$ (3) ${ }^{\circ}$
$V=609.48(17) \AA^{3}$
$Z=6$
$D_{x}=5.119 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=5.09 \mathrm{Mg} \mathrm{m}^{-3}$

[^0]Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Ba} 1-\mathrm{O}^{\text {i }}$	2.673 (9)	Ti1-O1 ${ }^{\text {i }}$	1.765 (10)
$\mathrm{Ba} 1-\mathrm{O} 3^{\text {ii }}$	2.673 (7)	Ti1-O7 ${ }^{\text {vii }}$	1.947 (5)
$\mathrm{Ba} 1-\mathrm{O} 6^{\text {ii }}$	2.703 (5)	Ti1-O8	1.9502 (19)
Ba1-O6	2.727 (9)	Ti1-O3	1.996 (5)
$\mathrm{Ba} 1-\mathrm{O} 3{ }^{\text {iii }}$	2.742 (8)	Ti1-O2	2.123 (5)
$\mathrm{Ba} 1-\mathrm{O}^{\text {iv }}$	2.954 (9)	Ti1-O1	2.171 (10)
$\mathrm{Ba} 1-\mathrm{O} 1^{\text {ii }}$	2.960 (5)	Ti1-Ti2	2.9069 (19)
$\mathrm{Ba} 1-\mathrm{O} 1^{\text {iv }}$	2.980 (5)	Ti2-O3	1.796 (5)
$\mathrm{Ba} 1-\mathrm{O} 8^{\mathrm{v}}$	3.035 (10)	Ti2-O2	1.849 (5)
$\mathrm{Ba} 1-\mathrm{O}^{\mathrm{i}}$	3.186 (7)	Ti2-O5 ${ }^{\text {i }}$	2.025 (10)
$\mathrm{Ba} 1-\mathrm{O} 4^{\text {vi }}$	3.258 (5)	Ti2-O5	2.028 (10)
Ba1-O7	3.279 (7)	Ti2-O4 ${ }^{\text {vi }}$	2.099 (5)
$\mathrm{Ba} 2-\mathrm{O} 7^{\text {vii }}$	2.766 (8)	Ti2-O5 ${ }^{\text {vi }}$	2.150 (5)
$\mathrm{Ba} 2-\mathrm{O}^{\text {vi }}$	2.766 (8)	Ti2-Ti3	3.067 (3)
$\mathrm{Ba} 2-\mathrm{O} 2{ }^{\text {viii }}$	2.858 (9)	$\mathrm{Ti} 2-\mathrm{Ti3}{ }^{\text {i }}$	3.083 (3)
$\mathrm{Ba} 2-\mathrm{O} 2$	2.858 (9)	Ti2-Ti2 ${ }^{\text {ix }}$	3.1853 (19)
$\mathrm{Ba} 2-\mathrm{O} 7^{\text {ix }}$	2.862 (8)	Ti2-Ti2 ${ }^{\text {vi }}$	3.1853 (19)
$\mathrm{Ba} 2-\mathrm{O}^{\mathrm{x}}$	2.862 (8)	Ti2-Ti3 ${ }^{\text {vi }}$	3.2536 (17)
$\mathrm{Ba} 2-\mathrm{O} 2^{\text {xi }}$	2.899 (9)	Ti3-O6	1.710 (5)
$\mathrm{Ba} 2-\mathrm{O} 2^{\text {xii }}$	2.899 (8)	Ti3-O7	1.879 (5)
$\mathrm{Ba} 2-\mathrm{O} 1$	2.928 (5)	$\mathrm{Ti} 3-\mathrm{O} 4^{\text {vi }}$	1.983 (11)
$\mathrm{Ba} 2-\mathrm{O} 1^{\text {viii }}$	2.928 (5)	$\mathrm{Ti} 3-\mathrm{O} 4^{\text {ix }}$	2.018 (11)
$\mathrm{Ba} 2-\mathrm{O} 4$	2.998 (5)	Ti3-O5	2.047 (5)
$\mathrm{Ba} 2-\mathrm{O} 4{ }^{\text {viii }}$	2.998 (5)	$\mathrm{T} 3-\mathrm{O}^{\text {ix }}$	2.474 (5)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ti} 1-\mathrm{O} 7^{\text {vii }}$	94.1 (4)	$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Ti} 2-\mathrm{O} 4^{\text {vi }}$	79.3 (3)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ti} 1-\mathrm{O} 8$	94.9 (4)	$\mathrm{O} 5-\mathrm{Ti} 2-\mathrm{O} 4^{\text {vi }}$	79.0 (3)
O7 ${ }^{\text {vii }}-\mathrm{Ti} 1-\mathrm{O} 8$	104.55 (18)	$\mathrm{O} 3-\mathrm{Ti} 2-\mathrm{O}^{\text {vi }}$	176.2 (2)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ti} 1-\mathrm{O} 3$	96.7 (3)	$\mathrm{O} 2-\mathrm{Ti} 2-\mathrm{O}^{\text {vi }}$	87.1 (2)
O7 ${ }^{\text {vii }}-\mathrm{Ti} 1-\mathrm{O} 3$	161.8 (3)	$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Ti} 2-\mathrm{O}^{\text {vi }}$	80.7 (3)
O8-Ti1-O3	89.03 (15)	$\mathrm{O} 5-\mathrm{Ti} 2-\mathrm{O}^{\text {vi }}$	80.6 (3)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ti} 1-\mathrm{O} 2$	95.2 (4)	$\mathrm{O} 4^{\mathrm{vi}}-\mathrm{Ti} 2-\mathrm{O} 5^{\text {vi }}$	85.73 (19)
$\mathrm{O} 7^{\text {vii }}-\mathrm{Ti} 1-\mathrm{O} 2$	87.8 (2)	O6-Ti3-O7	97.3 (2)
$\mathrm{O} 8-\mathrm{Ti} 1-\mathrm{O} 2$	163.4 (4)	$\mathrm{O} 6-\mathrm{Ti} 3-\mathrm{O} 4^{\text {vi }}$	97.1 (4)
$\mathrm{O} 3-\mathrm{Ti} 1-\mathrm{O} 2$	76.7 (2)	$\mathrm{O} 7-\mathrm{Ti} 3-\mathrm{O} 4^{\text {vi }}$	98.0 (4)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ti} 1-\mathrm{O} 1$	176.5 (3)	$\mathrm{O} 6-\mathrm{Ti} 3-\mathrm{O} 4^{\text {ix }}$	96.8 (4)
O7 ${ }^{\text {vii }}-\mathrm{Ti} 1-\mathrm{O} 1$	82.8 (3)	$\mathrm{O} 7-\mathrm{Ti} 3-\mathrm{O} 4^{\text {ix }}$	95.4 (4)
O8-Ti1-O1	84.3 (5)	$\mathrm{O} 4^{\mathrm{vi}}-\mathrm{Ti} 3-\mathrm{O} 4^{\mathrm{ix}}$	159.3 (3)
O3-Ti1-O1	86.7 (3)	O6-Ti3-O5	102.3 (2)
$\mathrm{O} 2-\mathrm{Ti} 1-\mathrm{O} 1$	86.4 (3)	O7-Ti3-O5	160.2 (2)
$\mathrm{O} 3-\mathrm{Ti} 2-\mathrm{O} 2$	89.1 (2)	$\mathrm{O} 4^{\text {vi }}-\mathrm{Ti} 3-\mathrm{O} 5$	81.3 (3)
$\mathrm{O} 3-\mathrm{Ti} 2-\mathrm{O} 5^{\mathrm{i}}$	100.0 (3)	$\mathrm{O} 4{ }^{\text {ix }}-\mathrm{Ti} 3-\mathrm{O} 5$	80.7 (3)
$\mathrm{O} 2-\mathrm{Ti} 2-\mathrm{O} 5^{\mathrm{i}}$	99.3 (4)	$\mathrm{O} 6-\mathrm{Ti} 3-\mathrm{O} 2^{\text {ix }}$	177.0 (2)
$\mathrm{O} 3-\mathrm{Ti} 2-\mathrm{O} 5$	100.0 (3)	$\mathrm{O} 7-\mathrm{Ti} 3-\mathrm{O} 2^{\text {ix }}$	85.61 (19)
$\mathrm{O} 2-\mathrm{Ti} 2-\mathrm{O} 5$	99.9 (4)	$\mathrm{O} 4{ }^{\text {vi }}-\mathrm{Ti} 3-\mathrm{O} 2^{\mathrm{ix}}$	82.6 (3)
$\mathrm{O} 5^{\mathrm{i}}$-Ti2-O5	152.3 (3)	$\mathrm{O} 4^{\mathrm{ix}}-\mathrm{Ti} 3-\mathrm{O} 2^{\mathrm{ix}}$	82.7 (3)
$\mathrm{O} 3-\mathrm{Ti} 2-\mathrm{O} 4{ }^{\text {vi }}$	98.0 (2)	$\mathrm{O} 5-\mathrm{Ti} 3-\mathrm{O} 2^{\text {ix }}$	74.69 (18)
$\mathrm{O} 2-\mathrm{Ti} 2-\mathrm{O} 4{ }^{\text {vi }}$	172.8 (2)		

Symmetry codes: (i) $x, y-1, z$; (ii) $\frac{1}{2}-x, y-\frac{1}{2},-z$; (iii) $\frac{1}{2}-x, \frac{1}{2}+y,-z$; (iv) $\frac{1}{2}+x, y-\frac{1}{2}, z$; (v) $\frac{1}{2}+x, \frac{1}{2}+y, z$; (vi) $\frac{1}{2}-x, y-\frac{1}{2}, 1-z$; (vii) $x-\frac{1}{2}, y-\frac{1}{2}, z$; (viii) $-x, y, 1-z ; \quad$ (ix) $\frac{1}{2}-x, \frac{1}{2}+y, 1-z ; \quad$ (x) $\quad x-\frac{1}{2}, \frac{1}{2}+y, z ; \quad$ (xi) $\quad x, 1+y, z ; \quad$ (xii) $-x, 1+y, 1-z$.

Data collection

Bruker SMART area-detector	1636 independent reflections
\quad diffractometer	1557 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.066$
Absorption correction: analytical	$\theta_{\max }=30.0^{\circ}$
\quad face-indexed $(X P R E P ;$ Bruker,	$h=-17 \rightarrow 23$
1997)	$k=-5 \rightarrow 5$
$\quad T_{\min }=0.189, T_{\max }=0.347$	$l=-13 \rightarrow 13$
2619 measured reflections	

diffractometer
ω scans
Absorption correction: analytical face-indexed (XPREP; Bruker, $T_{\text {min }}=0.189, T_{\text {max }}=0.347$
2619 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.112$
$S=1.08$
1636 reflections
74 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0689 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

$(\Delta / \sigma)_{\max }<0.001$

$\Delta \rho_{\text {max }}=2.76 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-3.05 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0254 (11)
Absolute structure: Flack (1983), 636 Friedel pairs
Flack parameter $=0.30(8)$

The largest densities in the difference map were close to atoms Ba1 and Ba 2 . The refinement of the Flack (1983) parameter was obtained by way of the TWIN/BASF instructions (Flack \& Bernardinelli, 2000). The Flack parameter indicates a $70: 30$ ratio of two possible polarities of the structure. Since one of the three principal meansquare atomic displacements for the O5 site tended to a small negative value when the refinement included anisotropic displacement parameters, all O -atom sites were refined with isotropic displacement parameters.

Data collection: $S M A R T$ (Bruker, 1999) and SAINT (Bruker, 1999); cell refinement: SMART and SAINT; data reduction: XPREP in SHELXTL (Bruker, 1997); program used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 1999) and CrystalMaker (Palmer, 2002); software used to prepare material for publication: SHELXL97.

The authors would like to thank Professor T. Ito for his encouragement and support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1654). Services for accessing these data are described at the back of the journal.

References

Akashi, T., Iwata, H. \& Goto, T. (2003a). Mater. Trans. 44, 802-804.
Akashi, T., Iwata, H. \& Goto, T. (2003b). Mater. Trans. Submitted.
Brese, N. E. \& O’Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Bruker (1997). XPREP in SHELXTL. Version 6.02A. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SMART (Version 5.611) and SAINT (Version 6.02A). Bruker AXS Inc., Madison, Wisconsin, USA.
Buttner, R. H. \& Maslen, E. N. (1992). Acta Cryst. B48, 764-769.
Dowty, E. (1999). ATOMS. Version 5.07 for Macintosh. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Flack, H. D. \& Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
Harrison, F. W. (1956). Acta Cryst. 9, 495-500.
Hofmeister, W., Tillmanns, E. \& Baur, W. H. (1984). Acta Cryst. C40, 15101512.

Palmer, D. C. (2002). CrystalMaker. Version 5.1. CrystalMaker Software, PO Box 183, Bicester, Oxfordshire OX26 3TA, England.
Ritter, J. J., Roth, R. S. \& Blendell, J. E. (1986). J. Am. Ceram. Soc. 69, 155162.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Tillmanns, E. (1974). Acta Cryst. B30, 2894-2896.
Wheeler, R. A., Whangbo, M.-H., Hughbanks, T., Hoffmann, R., Burdett, J. K. \& Albright, T. A. (1986). J. Am. Chem. Soc. 108, 2222-2236.

[^0]: D_{m} measured by the Archimedean method
 Mo $K \alpha$ radiation
 Cell parameters from 818 reflections
 $\theta=2.2-30.0^{\circ}$
 $\mu=13.32 \mathrm{~mm}^{-1}$
 $T=293$ (2) K
 Prism, colorless
 $0.20 \times 0.14 \times 0.12 \mathrm{~mm}$

